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1. INTRODUCTION

Liquid propellants based on aqueous solutions of hydroxyl ammonium nitrate (HAN) and various fuels

have been the subject of extensive studies (Decker et al. 1987). Of particular interest are the propellants

designated LP1845 and LP1846, where the fuel is triethanol ammonium nitrate (TEAN). In our earlier

work (Beyer 1990) we have shown that nitrous oxide, known to be a major product of the thermal

decomposition of HAN, reacts with (ignites) TEAN powder. In this study, we further characterize this

reaction at lower pressures, and attempt to produce an overall kinetics rate constant for this complex

reaction.

2. EXPERIMENTAL

The shock tube used in these studies is stainless steel with a 98-mm inside diameter. The driver

section is 1.2 m long; the driven (test) section is 6.3 m long. For typical conditions of the present

measurements, a 0.001-in (25.4-pm) thick Mylar polyester diaphragm was used. The initial pressures were

18 psi (120 kpa) in the driver section and from 5 to 20 torr (0.6 to 2.6 kpa) in the test section. The test

gas was either 5% oxidizer in argon or pure argon. The driver gas was 30% air with the balance helium

to maximize the test time. Under typical conditions, the passage of the initial shock raises the test gas

to a temperature of about 750-1,000 K with a corresponding pressure increase. The reflected shock

typically doubles the temperature of the gas and also raises the pressure. These present measurements

were carried out over a range of reflected shock temperatures from 1,300 K to 1,900 K. Pressure in the

reflected shock was near one half an atmosphere. The pressures were lower than those of the earlier

studies in an attempt to increase the ignition delay time to where the temperature dependence could be

more easily determined.

The layout of the test end of the shock tube is shown in Figure 1. A variety of instrumentation was

used. Pressure transducers were placed at a minimum of two points to characterize the shock wave

propagation. From the calculated shock velocity, a frozen-chemistry thermochemical equilibrium code

(Gordon and McBride 1971) was used to calculate the pressure and temperature behind the shock waves.

Ignition time was detected through a window in the end wall by a photomultiplier tube with a 389-nm
filter, where strong CN radical emission from the onset of combustion is favored over other sources of

light in the tube. A PbSe infrared detector with appropriate wavelength filters was used to study the

emission from the nitrous oxide. In some experiments, carbon dioxide emission from mixtures of 5%
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carbon dioxide in argon were also studied to compare signal loss for a molecule not expected to dissociate

as rapidly as the nitrous oxide. The field of view for the infrared studies was a narro, region near

pressure gauge No. I in Figure 1 (viewed from the side). A limited number of observations were also

made with a Fairchild model 1200C line camera to verify that the ignition was taking place as predicted.

In our present setup, we were able to record a line image with 200-point spatial resolution each 50 ps.

All signals were recorded with a 4-channel transient digitizer and analyzed with an i487-based ("PC-

clone") desktop computer.

The sample of TEAN to be ignited (typically < 20 mg) was ground to a fine powder and placed on

a 1-in-diameter disk with feathered edges mounted in the center of the tube about 210 mm from the end

wall. TEAN is fairly hygroscopic. Samples were kept in a desiccator prior to use, and further outgassed

in the evacuated shock tube for about 1 hour on humid days and when it was thought possible that water

may have been added during transfer to the shock tube. No attempt was made to analyze the percent

hydration of the samples. During a shock experiment, the incident shock wave sweeps the powder off the

disk and disperses it in the region between the disk and the end wall. It is assumed that the smallest

particles, which are the earliest to ignite, move with the gas velocity behind the shock wave. The incident

shock is not sufficiently hot in these experiments to ignite the sample and its chemical effect is ignored.

The reflected shock returns from the end wall, heats the particles, which then ignite after a measured delay

time in the stagnant gas. The smallest particles are calculated to be on the order of 100 mm from the end

wall when they encounter the reflected shock. The pressure and shock transit time between pressure

gauges are measured directly. The pressure rise associated with the shocks is calculated from the code

(Gordon and McBride 1971); as long as the calculated and measured pressures are in reasonable

agreement, the experimental behavior is assumed to be ideal and the calculated numbers are used to

determine the time of interaction of the reflected shock and the smallest TEAN particles.

3. OBSERVATIONS

A series of line images from the line camera is shown in Figure 2. These images were recorded under

somewhat stronger shock conditions than typical data in order to raise the temperature and provide

sufficiently strong signals for the camera to record. As can be seen in the figure, there is a small amount

of early light at approximately 25 mm (12 arb units) from the end wall, followed by ever greater amounts

of light as the larger particles to the right ignite and bum. In subsequent images, the amount of light

grows even greater to the right for about a millisecond. Because of experimental difficulty and variability,

2



the camera pixel uniL. ,vere not calibrated; rather, the predicted point of ignition was marked with a light

source and compared to the observation. The total field of view of the camera was on the order of

4 inches (100 mm). The apparent signal peak at the end wall has not been addressed in detail; it may be

due to impurities.

An important issue raised in our earlier study was on the thermal stability of the nitrous oxide. Before

pursuing these ignition measurements further, a study of this stability was made using the infrared detector

and a 4.49-pm bandpass filter. Without the filter, the emission followed the pressure trace very well (but

with a much slower rise time). A typical trace of good behavior observed with the filter is shown in

Figure 3a. The incident and reflected shocks pass the point of observation at 0 and 200 ps, respectively.

The relatively slow rise (compared to the pressure, which is instantaneous on this time scale) is assumed

to be instrumental. As can be seen, the N20 emission was probably not affected by thermal decomposition

before the ignition time; this held true as long as we stayed below about 1,900 K. An example of a hotter

shock and presumed loss of N20 due to thermal decomposition is shown in Figure 3b. Under some

conditions the 4.49-pm signal was not as steady as expected based on temperature and the pressure

records. Under these conditions, measurements were mai..; with a mixture of CO2 in argon and a 4.29-pm

filter. The same unsteady behavior and limited test time were observed, leading to the conclusion that the

temperature variations were flow-related; shock tube conditions, especially pressure ratios, were adjusted

accordingly to minimize these changes.

The ignition was determined from the light detected through the 389-nm filter, which is assumed to

be dominated by CN emission. There are clearly other sources of light at this wavelength under the

conditions of these experiments. However, as long as our tube was kept reasonably clean, in order to limit

the amount of black body emission from background particles, the ignition discrimination was reasonably

good. Figure 4 shows the light signals detected with samples of TEAN shocked under nearly identical

conditions - 1,600 K and 0.5 atm. As can be seen in the figure, the light rises much earlier with the N 2 0

present. In Figure 4, the two signals are not on the same scale; the quantity of light with an oxidizer

present (e.g., N20 in this case) is always much greater. For comparison, measurements were also made

with oxygen/argon mixtures. The ignition characteristics were somewhat different, as shown in Figure 5.

Of particular note is the indication of a distinctive slope break, which was frequently, but not always,

present in the oxygen shots. This phenomenon will be discussed in more detail later. The oxygen shots

were also different in that there was almost always total consumption of the TEAN powder, compared to

the nitrous oxide shots where a considerable residue of the larger particles always remained. Although
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it was not carefully quantified, the ignition threshold for TEAN in 5% N20/Ar under the conditions of

these experiments was about 1,325 K.

4. ANALYSIS

As mentioned earlier, the shock wave calculations are assumed to describe the experimental conditions.

In order to measure an ignition delay time, the time that the particles enter the hot flow must be known.

The assumptions are made that the smallest solid particles move with the gas velocity behind the incident

shock, and that these same small particles heat up on a time scale short compared with the delay time (i.e.,

instantaneously) and that they are the first to ignite. The ignition delay time of these smallest particles

is thus calculated from the results of the shock wave calculations which are based on the velocity, which

is determined from the pressure gauge timing measurements, and the initial test section pressure. Thus,

time zero for the heating of the particles is the calculated time for the smallest particles to enter the

reflected shock region.

In order to deduce a "first light" time from the photomultiplier signals, the derivative of the signal is

taken. For most of the N20 signals, this technique yields the same result as careful inspection of the light

signal. However, for the 02 observations, there is frequently, but not always, a second sharp break in the

derivative.

It is reasonable to first assume that the kinetics are described by an Arrhenius form,

Rate = [oxidizerIAe' T ,

where [oxidizer] is the concentration of N20 or 02. In our measurements, the fraction of the gas which

is oxidizer is always 5%, so this concentration is proportional to the pressure/temperature ratio in the

reflected shock region. Since the observed delay time is proportional to the inverse of the rate, we can

rewrite this expression as:

Delay * Pressure Ae/RT-_A/e m/ "

Temperature
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Graphically, if we plot the natural log of the product of the delay time with the (calculated) pressure

divided by the (calculated) tenperature vs 1,000/temperature, the slope is ER where E. is the activation

energy of the reaction and R is the gas constant. Figure 6 shows such a plot for the ignition of TEAN

by N20/Ar. Alth. agh the number of data is not large, the behavior is reasonable. Since there are two

breaks in the oxygen data, both were plotted and analyzed (Figure 7). In order to determine the activation

energy more accurately, the data were fit to the full Arrhenius form using the well known but

undocumented FI'ER program of A. J. Kotlar. The activation energy from these N20 data is

20.7 ±1.1 kcal/mol where the uncertainty is one standard deviation. The activation energy for the oxygen

data analyses are 16.4 ±1.2 kcal/mol and 17.6 ±6.4 kcal/mol for the first and second breaks, respectively.

Tiese are essentially the same within their statistical uncertainties (standard deviations) and have been

combined as one data set to give a value of 17.0 ±3.3 kcal/mol for the reaction with oxygen. It is of some

note that the magnitude of the delays is not greatly different for the two oxidizers studied here.

5. DISCUSSION

The interpretation of the numbers measured here is interesting. When the TEAN is heated in the

shock tube, it possibly can bum as solid; melt and bum as a liquid; or melt, thermally decompose, and

bum as a gas. The melting point of TEAN is near 800 C with decomposition t ing place at much higher

temperatures-nearer 2800 C. There was not a readily available apparatus for the measurement of the heat

of fusion prior to the preparation of this report. A search of some previous contract work done by the

Navy (Skahan 1987) yielded values of 149 J/g (7.55 kcal/mol) for pure TEAN and 292 Jig (14.8 kcal/mol)

for 80% TEAN, with the balance assumed by the present author to be water of hydration of this

hygroscopic material. As mentioned in Section 2, reasonable efforts were made to keep the TEAN dry,

but no analysis was made. The measured values of 20.7 kcal/mol and 17.0 kcal/mol are strongly

suggestive that, at least with oxygen, and possibly with nitrous oxide, we are measuring the melting

kinetics and that the ignition reactions take place very rapidly after melting. If one concludes that the

melting is the rate limiting step of this reaction, then the variability of these measured numbers may well

be due to variations in the water content of samples used.

A second possibly important observation is that the oxygen consumes the sample completely whereas

the nitrous oxide leaves many of the larger sized particles unaffected on the end and side walls of the

shock tube. If both were rate limited by the melting of the sample, one might reasonably expect similar

consumption of the sample in both cases. Thus, the difference in activation energy may in fact be real
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and suggests that the nitrous oxide does not react as rapidly with the liquid TEAN as does oxygen. This

might be significant in that in the liquid propellant combustion, the TEAN never exists as aii isolated

solid, since it is above its melting point before significant reaction takes place.

6. CONCLUSION

Measurements have been made of the activation energy for the reaction of TEAN with oxygen and

nitrous oxide in argon. The magnitude of the numbers measured and other observations suggest that

oxygen reacts rapidly with the TEAN after melting, while the nitrous oxide reaction may have a rate

limiting step other than simple melting.
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